Please enable javascript, or click here to visit my ecommerce web site powered by Shopify.
Jump to: navigation, search

Difference between revisions of "AI/RKNN-Toolkit"

< AI
(Created page with "=== Introduction === Rockchip offers the '''RKNN-Toolkit''' development kit for model conversion, forward inference, and performance evaluation. Users can easily perform the...")
 
(Example)
Line 40: Line 40:
 
==== Example ====
 
==== Example ====
  
 +
    <syntaxhighlight lang="Python" line='line'>
 
     from rknn.api import RKNN
 
     from rknn.api import RKNN
 
      
 
      
Line 46: Line 47:
 
     if __name__ == '__main__':
 
     if __name__ == '__main__':
 
         rknn = RKNN()  # Create an RKNN execution object
 
         rknn = RKNN()  # Create an RKNN execution object
   
+
   
    """
+
        '''Configure model input for NPU preprocessing of input data
    Configure model input for NPU preprocessing of input data
+
        channel_mean_value='0 0 0 255', when runing forward inference, the RGB data will be converted as follows
    channel_mean_value='0 0 0 255', when runing forward inference, the RGB data will be converted as follows
+
        (R - 0)/255, (G - 0)/255, (B - 0)/255, The RKNN model automatically performs the mean and normalization
    (R - 0)/255, (G - 0)/255, (B - 0)/255, The RKNN model automatically performs the mean and normalization
+
        reorder_channel=' 0 1 2' , used to specify whether to adjust the image channel order, set to 0 1 2, means no adjustment according to the input image channel order.
    reorder_channel=' 0 1 2' , used to specify whether to adjust the image channel order, set to 0 1 2, means no adjustment according to the input image channel order.
+
        reorder_channel=' 2 1 0' , indicates that 0 and 2 channels are exchanged. If the input is RGB, it will be adjusted to BGR. If it is BGR will be adjusted to RGB
    reorder_channel=' 2 1 0' , indicates that 0 and 2 channels are exchanged. If the input is RGB, it will be adjusted to BGR. If it is BGR will be adjusted to RGB
+
        Image channel order is not adjusted'''
    Image channel order is not adjusted
+
    """"
+
 
      
 
      
 
         rknn.config(channel_mean_value='0 0 0 255', reorder_channel='0 1 2')
 
         rknn.config(channel_mean_value='0 0 0 255', reorder_channel='0 1 2')
 
      
 
      
    """
+
        '''
    load TensorFlow model
+
        load TensorFlow model
    tf_pb='digital_gesture.pb' specify the TensorFlow model to be converted
+
        tf_pb='digital_gesture.pb' specify the TensorFlow model to be converted
    inputs specify the input node in the model
+
        inputs specify the input node in the model
    outputs specify the output node in the model
+
        outputs specify the output node in the model
    input_size_list specify the size of the model input
+
        input_size_list specify the size of the model input
    """
+
        '''
 
      
 
      
 
         print('--> Loading model')
 
         print('--> Loading model')
Line 72: Line 71:
 
                             input_size_list=[[INPUT_SIZE, INPUT_SIZE, 3]])
 
                             input_size_list=[[INPUT_SIZE, INPUT_SIZE, 3]])
 
         print('done')
 
         print('done')
   
+
 
    """
+
        '''
    Create a parsing pb model
+
        Create a parsing pb model
    do_quantization=False do not to be quantified
+
        do_quantization=False do not to be quantified
    Quantization will reduce the size of the model and increase the speed of the operation, but there will be loss of precision.
+
        Quantization will reduce the size of the model and increase the speed of the operation, but there will be loss of precision.
    """
+
        '''
 
      
 
      
 
         print('--> Building model')
 
         print('--> Building model')
Line 84: Line 83:
 
         rknn.export_rknn('./digital_gesture.rknn')  # Export and save rknn model file
 
         rknn.export_rknn('./digital_gesture.rknn')  # Export and save rknn model file
 
         rknn.release()  # Release RKNN Context
 
         rknn.release()  # Release RKNN Context
 +
    </syntaxhighlight>
  
 
=== Model Inference ===
 
=== Model Inference ===

Revision as of 01:27, 27 November 2019

Introduction

Rockchip offers the RKNN-Toolkit development kit for model conversion, forward inference, and performance evaluation.

Users can easily perform the following functions through the provided Python interface:

1) Model conversion: support Caffe、Tensorflow、TensorFlow Lite、ONNX、Darknet model, support RKNN model import and export, and so the models can be loaded and used on the hardware platform.

2) forward inference: user can simulate running the model on the PC and get the inference results, and run the model on the specified hardware platform RK3399Pro/RK1808 and get the inference results.

3) performance evaluation: user can simulate running the model on a PC to get both the total time spent on the model and the time-consuming information of each layer. User can also run the model on the specified hardware platform RK3399Pro/RK1808 by online debugging, and get both the total time of the model running on the hardware and the time-consuming information of each layer.

This chapter mainly explains how to perform model conversion on the RK3399Pro/RK1808 development board. For other function descriptions, please refer to the RKNN-Toolkit User Guide: "RKNN-Toolkit User Guide_V*.pdf".

Installation preparation

   sudo dnf install -y cmake gcc gcc-c++ protobuf-devel protobuf-compiler lapack-devel
   sudo dnf install -y python3-devel python3-opencv python3-numpy-f2py python3-h5py python3-lmdb  python3-grpcio
   pip3 install scipy-1.2.0-cp36-cp36m-linux_aarch64.whl
   pip3 install onnx-1.4.1-cp36-cp36m-linux_aarch64.whl
   pip3 install tensorflow-1.10.1-cp36-cp36m-linux_aarch64.whl

After installing the above basic package, install the rknn-toolkit wheel package. RKNN wheel package and other Python wheel packages can be downloaded from OneDrive.

Since pip does not have a ready-made aarch64 version of the scipy and onnx wheel packages, we have provided a compiled wheel package. If you want the latest version of the wheel package or find a problem with the pre-compiled wheel package, you can use pip to install it yourself. This will compile and install the wheel package. It will take a long time and you need to wait patiently.

   pip3 install scipy
   pip3 install onnx

If the installation encounters an error, please install the corresponding software package according to the error message.

Model Conversion

API call flow

Rknn-conv-call.png

Example

  1.     from rknn.api import RKNN
  2.  
  3.     INPUT_SIZE = 64
  4.  
  5.     if __name__ == '__main__':
  6.         rknn = RKNN()   # Create an RKNN execution object
  7.  
  8.         '''Configure model input for NPU preprocessing of input data
  9.         channel_mean_value='0 0 0 255', when runing forward inference, the RGB data will be converted as follows
  10.         (R - 0)/255, (G - 0)/255, (B - 0)/255, The RKNN model automatically performs the mean and normalization
  11.         reorder_channel=' 0 1 2' , used to specify whether to adjust the image channel order, set to 0 1 2, means no adjustment according to the input image channel order.
  12.         reorder_channel=' 2 1 0' , indicates that 0 and 2 channels are exchanged. If the input is RGB, it will be adjusted to BGR. If it is BGR will be adjusted to RGB
  13.         Image channel order is not adjusted'''
  14.  
  15.         rknn.config(channel_mean_value='0 0 0 255', reorder_channel='0 1 2')
  16.  
  17.         '''
  18.         load TensorFlow model
  19.         tf_pb='digital_gesture.pb' specify the TensorFlow model to be converted
  20.         inputs specify the input node in the model
  21.         outputs specify the output node in the model
  22.         input_size_list specify the size of the model input
  23.         '''
  24.  
  25.         print('--> Loading model')
  26.         rknn.load_tensorflow(tf_pb='digital_gesture.pb',
  27.                              inputs=['input_x'],
  28.                              outputs=['probability'],
  29.                              input_size_list=[[INPUT_SIZE, INPUT_SIZE, 3]])
  30.         print('done')
  31.  
  32.         '''
  33.         Create a parsing pb model
  34.         do_quantization=False do not to be quantified
  35.         Quantization will reduce the size of the model and increase the speed of the operation, but there will be loss of precision.
  36.         '''
  37.  
  38.         print('--> Building model')
  39.         rknn.build(do_quantization=False)
  40.         print('done')
  41.         rknn.export_rknn('./digital_gesture.rknn')  # Export and save rknn model file
  42.         rknn.release()  # Release RKNN Context

Model Inference

API call flow

Rknn-infe-call.png

Example

   import numpy as np
   from PIL import Image
   from rknn.api import RKNN
   
   
   # Analyze the output of the model to get the most probable gesture and corresponding probability
   def get_predict(probability):
       data = probability[0][0]
       data = data.tolist()
       max_prob = max(data)
       return data.index(max_prob), max_prob;
   
   
   def load_model():
       rknn = RKNN()  # Create an RKNN execution object
       print('-->loading model')
       rknn.load_rknn('./digital_gesture.rknn')  # Load RKNN model
       print('loading model done')
       print('--> Init runtime environment')
       ret = rknn.init_runtime(host='rk3399pro')  # Initialize the RKNN runtime environment
       if ret != 0:
           print('Init runtime environment failed')
           exit(ret)
       print('done')
       return rknn
   
   
   def predict(rknn):
       im = Image.open("../picture/6_7.jpg")   # load image
       im = im.resize((64, 64),Image.ANTIALIAS)  # Image resize to 64x64
       mat = np.asarray(im.convert('RGB'))    # Convert to RGB format
       outputs = rknn.inference(inputs=[mat])   # Run forward inference and get the inference result
       pred, prob = get_predict(outputs)     # Transform the inference results into visual information
       print(prob)
       print(pred)
    
    
   if __name__=="__main__":
       rknn = load_model()
       predict(rknn) 
       rknn.release()